1^2+2^2+···+n^2阶梯型面积计算推演
The main purpose is to test the work condition of katex
rendering.
(n+1)3=(n2+2n+1)⋅(n+1)=n3+2n2+n+n2+2n+1=n3+3n2+3n+1
(n+1)3−n3=3n3+3n+1(2)
n3−(n−1)33(n−1)2+3(n−1)+13(n2−2n+1)+3n−23n2−6n+3+3n−23n2−3n+1=n3−[(n−1)2(n−1)]=n3−[(n2−2n+1)(n−1)]=n3−[n3−2n2+n−(n2−2n+1)]=n3−[n3−2n2+n−n2+2n−1]=n3−[n3−3n2+3n−1]=3n2−3n+1=3n2−3n+1=3n2−3n+1=3n2−3n+1
即
n3−(n−1)3=3n2−3n+1=3(n−1)2+3(n−1)+1(3)
由
n3−(n−1)333−2323−13=3(n−1)2+3(n−1)+1=3⋅22+3⋅2+1=3⋅12+3⋅1+1
n个等式两端分别相加
(n+1)3−1=3⋅[12+22+32+⋯+n2]+3⋅(1+2+3+⋯+n)+n
又有
1+2+3+⋯+n=2(n+1)n
代回可得
(n+1)3−1=3⋅[12+22+32+⋯+n2]+3⋅2(n+1)n+n
整理可得
3⋅[12+22+32+⋯+n2]=[(n+1)3−1]−[3⋅2(n+1)n+n]=(n+1)3−3⋅2(n+1)n−n−1=(n+1)3−3⋅2(n+1)n−(n+1)=(n+1)[(n+1)2−23n−1]=(n+1)[n2+2n+1−23n−1]=(n+1)[n2+2n−23n]=(n+1)n[n+21]
即
[12+22+32+⋯+n2]=61(n+1)n(2n+1)=6(2n+1)(n+1)n=6(2n+1)(n2+n)=6(2n3+n2+2n2+n)=62n3+3n2+n
自然数平方和累加/梯形图形面积累加:
=3n3+2n2+6n=3n3+2n2+6n